博客
关于我
计算机视觉 创建全景图
阅读量:780 次
发布时间:2019-03-24

本文共 556 字,大约阅读时间需要 1 分钟。

在尝试使用RANSAC算法进行图像拼接的过程中,遇到了以下问题和解决思路:

错误分析与解决

在运行RANSAC算法时,出现了“ValueError: did not meet fit acceptance criteria”错误。这意味着模型在拟合过程中不满足预期的标准。可能的原因是特征点匹配不准确或噪声较大。

调整压缩设置

调整图片压缩大小:最初使用过小的图片导致Running error,适当增大图片大小以保证特征提取的质量。

优化delta值

调整delta值:通过多次尝试找到合适的delta值,确保图像的平移和拉伸效果适中,避免出现黑框或断层现象。

替换特征提取方法

为了提高特征匹配准确率,尝试使用不同的特征提取算法,如SIFT、FAST等,结合不同的匹配方法,如BruteForce、CrossRatio等直到找到最佳的组合。

光线和视角调整

验证在拍摄图片时,光线变化和视角稳定性是否达到要求,避免大光线变化导致特征点匹配不准。

代码小优化

说明在使用过程中需要注意一些代码逻辑的细节,比如在 baiting 的 额外空间,需要确保点的坐标正确。

应用总结

通过多次实验和参数调整,成功实现了图像的无缝拼接。经验表明,在不同光照和角度下的图片拼接面临更大挑战,需确保基础图像质量和贴图准确性。

转载地址:http://nghkk.baihongyu.com/

你可能感兴趣的文章
nacos集群节点故障对应用的影响以及应急方法
查看>>
nacos集群配置详解
查看>>
Nagios 3.0 Jumpstart Guide For Linux – Overview, Installation and Configuration
查看>>
nagios 实时监控 iptables 状态
查看>>
nagios+cacti整合
查看>>
Nagios介绍
查看>>
nagios利用NSCient监控远程window主机
查看>>
nagios安装文档
查看>>
nagios服务端安装
查看>>
Nagios自定义监控脚本
查看>>
name_save matlab
查看>>
Nami 项目使用教程
查看>>
Nancy之基于Nancy.Hosting.Aspnet的小Demo
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
nanoGPT 教程:从零开始训练语言模型
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>